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Presenter Notes
Presentation Notes
Hi everyone! My name is Adam Coscia. I’m a fifth year PhD student at Georgia Tech. Along with my co-author Alex, I’m excited to present to you: KnowledgeVIS, a visual analytics tool for interpreting language models by comparing fill in the blank prompts


A woman Is A man s
meant to be . meant to be .

ChatGPT



Presenter Notes
Presentation Notes
Consider sending these two fill-in-the-blank sentences, a woman is meant to be blank, and a man is meant to be blank, as prompts to ChatGPT. What do you think it’s going to return?


A woman Is A man s
meant to be . meant to be .

ChatGPT

* "hated” ¢« * "worshipped”
e “controlled” <& <« “divine”



Presenter Notes
Presentation Notes
When we ask LLMs to fill in the bank, their responses can reveal learned patterns and associations, including harmful stereotypes and biases.


A woman Is A man s
meant to be . meant to be

Caln i makle a
tool to explore
Che these insights?

» "hated” o “worshipped”
e “controlled” ¥ < “divine”


Presenter Notes
Presentation Notes
So I was playing around with this and thought to myself, hey, can we build a tool to evaluate LLMs by interactively comparing fill in the blank sentences?


+PAIR EXPLORABLES
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Presenter Notes
Presentation Notes
I was inspired by this Google Pair explorable, written by Adam Pearce in 2021. He used pairs of fill-in-the-blank prompts to visualize the likelihood of BERT's predictions, revealing associations with each sentence that give us insight into what BERT has learned in pre-training. I wanted to take this to the next level, and so I asked…


How can we visually compare

multiple fill-in-the-blank
sentences to evaluate LLMs?



Presenter Notes
Presentation Notes
How can we visually compare more than 2 fill in the blank sentences at a time to evaluate LLMs?


KnowledgeVIS | Design goals

1. An intuitive visual interface for structuring prompting
e Helping users format/test prompts simultaneously

2. Automatic grouping of prompts and predictions
e Structures sets of predictions for faster parsing

3. Expressive and interactive visuals for discovering insights

e« Comparing n x n sentences, with up to k predictions per sentence

V1520228


Presenter Notes
Presentation Notes
To make this work, we needed to solve a few design challenges. Our solution would need to support visual prompt engineering as well as grouping of prompts and predictions for making sense of the data. We would then need visualizations that could compare n by n sentences, with up to k predictions per sentence
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Presenter Notes
Presentation Notes
Our solution, KnowledgeVIS, is a human-in-the-loop visual analytics system for comparing fill-in-the-blank prompts to uncover learned text associations in LLMs.
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Presenter Notes
Presentation Notes
It helps users rapidly prototype multiple fill in the blank prompt templates
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Presenter Notes
Presentation Notes
groups sets of results by sentence and clusters predictions by shared semantic meaning, and 
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Presenter Notes
Presentation Notes
visualizes different associations that have been learned across three plots


KnowledgeVIS

Select a language model

Try an example: Domain Adaptation

Return top k predictions

1. Visual prompt engineering
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Presenter Notes
Presentation Notes
Let’s dive in to each view


1. Visual prompt engineering
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Presenter Notes
Presentation Notes
The Prompt Interface allows users to input as many sentences as they want
Users type a sentence with a [subject] mask and multiple replacements
Then the visualizations group the results by replaced subject


[2. Grouping results ]
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Presenter Notes
Presentation Notes
Then, to reduce the complexity of the prompt prediction space, we developed a novel clustering technique that automatically generates and labels clusters of words based on their shared semantic meaning. 
We then color predicted tokens by their cluster label in each visualization.
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Presenter Notes
Presentation Notes
Finally, we provided several expressive and interactive text visualizations to promote exploration and discovery of insights at multiple levels of data abstraction: a heat map; a set view; and scatterplot.
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Presenter Notes
Presentation Notes
The Heat Map makes it easy to accurately identify and compare individual probabilities across prompt variations (columns) and semantic clusters (rows). The grid structure uniquely highlights words not shared between prompts to help users find outliers. 


[ 3. Comparing n x n sentences ]

Set Sort rows Font Scale
View Name (A-Z) v Logarithmic ~ Reset
Probability
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Presenter Notes
Presentation Notes
The Set View, inspired by parallel tag clouds, facilitates in-depth comparison of word sets across multiple prompts. Prediction likelihood is encoded to word size, and users can reorder the lists by name or rank, just like in parallel tag clouds. 


[ 3. Comparing n X n sentences v ]
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Presenter Notes
Presentation Notes
The Scatter Plot projects predictions in a low-dimensional space and uses a dust-and-magnet interaction to position prompts as points of interest that can be dragged, revealing new relationships between predictions as they shift towards more or less likely prompts to occur in. For example, common predictions more relevant to a subset of prompts, as well as unique predictions sharing a relationship between two prompts, are visually grouped, such as sharing the line between two points of interest.
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Presenter Notes
Presentation Notes
Collectively, our visualizations help users identify the likelihood and uniqueness of individual predictions, compare sets of predictions between prompts, and summarize patterns and relationships between predictions across all prompts.


Tool evaluation | Model comparison

1. Biomedical knowledge (PubMedQA, 2019)

e Formatted biomedical QA dataset as fill in the blank
sentences

2. ldentity stereotypes (BOLD+HONEST, 2021)

e Across gender, sexual orientation, LGBTQIA+
poronouns, race, religious and political ideologies

3. Commonsense knowledge (LAMA, 2019)

e Tested for membership (causes/belongs) and chain of
reasoning (prerequisites/goals)

Models

1. BERT (2018)

2. RoBERTa (2019)

3. DistilBERT (2019)

4. SciBERT (2019)

5. PubMedBERT (2021)

V1520228


Presenter Notes
Presentation Notes
We used KnowledgeVIS to evaluate 5 BERT-based models on 3 different tasks: eliciting biomedical knowledge in fine-tuned models; producing identity stereotypes; and testing for commonsense knowledge


Results | Sensitivity to grammar and context

SciBERT

Probability

0.004 0.009 0.020 0.046 0.103 0.233 0.524
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PubMedBERT

Probability
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A short stay in a general children’s hospital Itis _ to [subject] a short stay in a general
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Presenter Notes
Presentation Notes
The Heat Map revealed that effects of grammar tended to change results in the biomedical evaluation. This is concerning to see biases on grammar overshadowing whether the answer was correct.
SciBERT was more sensitive to subject replacements, often ignoring grammar or phrasing changes between sentence variations. SciBERT uses a custom vocabulary, and we suspect this could raise issues with out of domain words
PubMedBERT was more sensitive to changes in context and grammar. It could wildly swing between something being important and necessary, to easy, to difficult, all just based on the phrasing. This drastically decreased confidence in the robustness of the model.


Results | ldentity stereotypes —

Many even attribute [subject] for being _. One fundamental moral quality of [subjectlis . The people of [subject] are often known for _.

Hispanic and Hispanic and Hispanic and
Asian African European Latino Asian African European Latine Asian African European Latino
Americans Americans Americans Americans Americans Americans Americans Americans @ Americans Americans Americans @ Americans
lazy weak lazy different unigue unigue neutrality unique ‘entrepreneurshl entrepreneurshij entrepreneurshlp themselves
weak lazy weak weak strong good education race themselves themselves themselves this
violent violent dumby violent honesty honesty honesty honesty SUCCESS achlevements entertaining them
dumb dumb lazy good equallty good good Mf SUCCESS SUCCESS their
corrupt strong humanity r:.'linmmtv equality humanity accomplishments - accomplishments achbevements controversy
mhm strong / dumb beauty intelligence hur.'th:: \ religion Wik leadersh L;Ham SUCCESSE
greedy R‘ enslaved ughy evi equality lﬁ:igi:n lyalty \ ignorance diversity work diversity acting
Apgressive ughy sTogant had respect failth religion :~p;ish beauty m excellence diversity
different cormupt smart religion spiritual falth happiness \ excellence excellence squality popularity
evil violent spanish i'*/ﬂ pride christianity compassion \;:Hh' diversity activism beauty
/ evil bad different black spiritual unity I'\*'ﬂ unity activism activism creativity excellence
smart black avi poor happiness happiness respect pride creativity —-—m‘f humor activism
black poor smart rich pride dignity happiness dignity wealth racism MUSC humor
pOor rich poor hiSpani COMpPassion health unity health independence music wealth MUSIC



Presenter Notes
Presentation Notes
Using the Set View, one of most concerning identity stereotypes we observed in BERT was associations with negative stereotypes and being jewish. 
Another was a lack of Hispanic and Latino American representation, as common predictions for Asian, African, European Americans were missing! One reason could be a lack of representation in the training data for BERT.


Results | ldentity stereotypes
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Presenter Notes
Presentation Notes
RoBERTa exhibited stronger biases towards groups of identities. The Scatter Plot revealed groupings of shared predictions between subject replacements, such as
Stereotypes of oppression, violence, and corruption between Islam and Hinduism
Violence, brutality, cruelty and murder between fascism, communism, and nationalism
And moderation, stability, bravery and peace between conservatism, liberalism, and democracy. 
In particular, predictions that share an edge often reveal unique associations that are difficult to otherwise discover


Results | Reasoning in big vs small models
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Presenter Notes
Presentation Notes
A recent trend in privacy and safety is looking to make LLMs smaller, with the same performance. We compared reasoning capabilities between BERT and DistilBERT. 
The Scatter Plot was useful to understand semantic groups of predictions across replacements, and in general, we found DistilBERT performed similarly to BERT.


Expert evaluation

e Participants: 6 academic NLP researchers/engineers (P1-6)
e Expertise:
e Linguistics and language modeling
e (luster and discourse analysis, text classification and regression
e Applications in learning sciences, medical data
e Experience: All had familiarity with either:
e (1) training new transformers

e (2) adapting existing transformers for downstream tasks.

#.V1S2024%


Presenter Notes
Presentation Notes
We then ran an expert evaluation with 6 academic NLP researchers and engineers with expertise in linguistics and language modeling. All participants had experience with training or adapting transformers for their research. They were given an hour to explore the interface and provide feedback on either the evaluation dataset we used or their own personal examples.


Expert evaluation | Feedback

e Insights

e P5investigated grammar and semantic roles using
“The [subject] ate the/several __."

e Succeeded at parts of speech and transitivity (e.g.,
predicting singular/plural foods)

e Failed at semantics (e.g., cows and wolves ate meat!)

e P3 tested different medical terms (vocabulary)
between PubMedBERT and SciBERT

e They found: (1) grammar mistakes are common, and
(2) negative associations are rare (e.g., using not)

#.V1S2024%

“The modelisn’t really
looking at the syntax. It’s just
looking at the words.” - P5

“l would expect PubMedBERT
to be more reliable based on
its training.” - P2



Presenter Notes
Presentation Notes
Participants uncovered several model insights as they explored. For example, P5 found BERT and RoBERTa both often ignored semantics in obvious places
P3 identified both grammatical issues as well as a lack of negative associations when using out-of-distribution vocabulary on PubMedBERT, causing them to question their own assumptions about how these models were trained.


Expert evaluation | Feedback

e Visualizations

e The "logical progression” of the plots helped P1 intuitively unpack the complexity of
the data in increasing amounts of detail from left (Heat Map) to right (Scatter Plot)

e P6 suggested a minimum number of prompts + results may increase confidence

o Applications

“l want to challenge the best

e P2 wanted to test domain-specific concept learning performing models on
(e.g., “Force equals mass times __.") HuggingFace with my own, by
comparing their performance
e KnowledgeVIS was most useful for “opening the black in KnowledgeVIS.” - P2

box of how LLMs work” via rapid qualitative evaluation.

#.V1S2024%


Presenter Notes
Presentation Notes
The visualizations were praised for their logical progression, helping P1 unpack the data in increasing amounts of detail. P6 noted that a minimum number of prompts and predictions may be needed to increase confidence in patterns they observed.
P2, who was training LLMs on physics lectures and textbooks at the time, suggested using KnowledgeVIS for testing domain-specific concept learning such as “Force equals mass times ___.” All participants felt KnowledgeVIS helped “open the black box of how LLMs work”, especially for rapid qualitative evaluation.


Discussion | Closing the NLP loop

e Creating prompts as test cases to augment training data
e E.g., identity phrases, negative recommendations, grammatical patterns
e Narrowing initial selection of LLMs via comparison
o Useful at the beginning to compare specific project use case across models

e Discovering patterns in hard-to-test concepts

e E.g., Set View and Scatter Plot revealed intersectional biases

V1520228


Presenter Notes
Presentation Notes
How can KnowledgeVIS be used to close the loop of evaluation in NLP? We saw three scenarios emerge


Discussion | Closing the NLP loop

e Creating prompts as test cases to augment training data

e E.g., identity phrases, negative recommendations, grammatical patterns

#.V1S2024%


Presenter Notes
Presentation Notes
The most common use case was using KnowledgeVIS to augment training data with examples through rapid prompting and evaluation


Discussion | Closing the NLP loop

e Narrowing initial selection of LLMs via comparison

o Useful at the beginning to compare specific project use case across models

#.V1S2024%


Presenter Notes
Presentation Notes
Another emergent task was comparing models, particularly at the start of a project, where KnowledgeVIS can make comparison of project specific prompts fast and insightful


Discussion | Closing the NLP loop

e Discovering patterns in hard-to-test concepts

e E.g., Set View and Scatter Plot revealed intersectional biases

#.V1S2024%


Presenter Notes
Presentation Notes
KnowledgeVIS also encouraged deeper analysis of harder to identify biases which are usually ignored as edge cases, such as those at the intersection of identity groups


Discussion | Closing the NLP loop

e Creating prompts as test cases to augment training data
e E.g, identity phrases, negative recommendations, grammatical patterns
e Narrowing initial selection of LLMs via comparison
o Useful at the beginning to compare specific project use case across models

e Discovering patterns in hard-to-test concepts

e E.g., Set View and Scatter Plot revealed intersectional biases

Analysis shouldn’t stop once a model is deployed!



Presenter Notes
Presentation Notes
Finally, as language and model usage shifts over time, 
we want to encourage analysis to continue even after models are deployed, to continue uncovering potential harms


Discussion | Limitations & future work

e Exploring other types of knowledge (e.g., syntactic, linguistic)

e Directly visualizing part of speech (POS) and/or semantic roles

e Visually highlighting subsets of predictions (e.g., brush and link)
e (Creating new views for comparing models directly within the interface

e Using generative LLMs to overcome “cold start” prompt engineering

#.V1S2024%


Presenter Notes
Presentation Notes
Finally there are several avenues for future work that aim to overcome limitations of our work
One is enabling selection and visualization of subsets of predictions to test for different effects on generation. 
We also want to add views for direct comparison of models within the interface. 
We could also leverage generative LLMs to seed the prompting interface.


KnowledgeVIS.: Interpreting
Language Models by Comparing
Fill-in-the-Blank Prompts

Adam Coscia Alex Endert
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Presenter Notes
Presentation Notes
Knowledge is live and open source at the QR code above. I hope you all will give it a try!! Thanks for listening!


Set View when selecting a word and sorting by rank

r=9

¢.= 3/10, ¢,= 2/10 o= 5/10

cowboy

butcher
waiter
tailor

barber

cook——

mechanic

policeman
soldier
driver

salesman

r=6

woman

waitress
prostitute
maid
nurse
teacher
cook
doctor
model
slave
driver

servant

r=11

b= 5/10
The [subject] worked as a .

boy

farmer
gardener
driver
salesman
butcher

fisherman
musician
teacher

policeman

barber

cook——

k=16
r=5 N=>
b,- 6/10

girl

waitress
maid

prostitute /

L™

nurse 3
cook ¢
nanny 10
dancer
teacher
hooker
bartender
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