

KnowledgeVIS: Interpreting Language Models by Comparing Fill-in-the-Blank Prompts

Adam Coscia Alex Endert

A man is A woman is meant to be . meant to be ____.

*VIS2024

PAIR EXPLORABLES What Have Language Models Learned?

*VIS2024

Author: Adam Pearce | Date: July 2021 | Source: https://pair.withgoogle.com/explorables/fill-in-the-blank/

≁PAIR **EXPLORABLES** What Have Language Models Learned?

In Texas, they like to buy _.

BERT associates these potential purchases more with Texas

How can we visually compare **multiple** fill-in-the-blank sentences to evaluate LLMs?

more with New York than Texas

_ likelihood, New York sentence \rightarrow

Author: Adam Pearce | Date: July 2021 | Source: https://pair.withgoogle.com/explorables/fill-in-the-blank/

KnowledgeVIS | Design goals

1. An intuitive visual interface for structuring prompting

• Helping users format/test prompts simultaneously

2. Automatic grouping of prompts and predictions

• Structures sets of predictions for faster parsing

3. Expressive and interactive visuals for discovering insights

• Comparing **n x n** sentences, with up to **k** predictions per sentence

ea 🖌 strategy
tithmic ✓ Reset
ABC ABC I I 0.103 0.228
are likely to find a cat in a _" que predictions: shborhood (physical_entity): 0.019 el (physical_entity): 0.019 (physical_entity): 0.017
ield park ke in a _" 13 spsake in a _" 48 rloom in a _" 16 a in a _" 83 ategy in a _" 65
household museum shop

ea ✔ strategy							
ithmic V Reset							
ABC ABC I I 0.103 0.228							
que predictions: hborhood (physical_entity): 0.019 el (physical_entity): 0.019 (physical_entity): 0.017							
ield							
ke in a _" 13 prestaurant 48 rloom in a _" 48 rloom in a _" 16 a in a _" 83 attegy in a _" 65							
household							
shop store							

3. Comparing n x n sentences 🔽

3. Comparing n x n sentences 🔽

Set View	5	Sort rows Name (A-Z)	~	Font Scale Logarithmic	~ Reset
Probability ABC I 0.004	ABC 1 0.009	ABC /	ABC /	ABC A 0.103 0	BC 0.228
snake	Υοι cat	ı are likely to keepsake	find a [subje heirloon	ct]ina n idea	strategy
basket ^{book} building cave cemetery field	bar building cemetery field home hotel	book bookstore box catalog catalogue	bank book churchya collectio cottage	bool child rd crow on dictiona drear game	k book campaign d conflict ary crisis m crowd database
forest garden graveyard	house household library	drawer game library	home house househo	e grou e job Id newspap	p document game per group
house museum park	museum neighborhoo park	magazine museu newspaper	library m mansion museu	novel n persor m poen	n novel n problem
restaurant room	restauran room	t safe shop	pub shop vault	project	t room on scenario

Tool evaluation | Model comparison

1. Biomedical knowledge (PubMedQA, 2019)

• Formatted biomedical QA dataset as fill in the blank sentences

2. Identity stereotypes (BOLD+HONEST, 2021)

• Across gender, sexual orientation, LGBTQIA+ pronouns, race, religious and political ideologies

3. Commonsense knowledge (LAMA, 2019)

• Tested for membership (causes/belongs) and chain of reasoning (prerequisites/goals)

Models

- **1. BERT** (2018)
- **2. RoBERTa** (2019)
- **3. DistilBERT** (2019)
- **4.** SciBERT (2019)

5. PubMedBERT (2021)

Results | Sensitivity to grammar and context

F

Results | Identity stereotypes

Ē

BERT

Results | Identity stereotypes

F

Results | Reasoning in big vs small models

· VIS2024

Expert evaluation

- Participants: 6 academic NLP researchers/engineers (P1-6)
 - Expertise:
 - Linguistics and language modeling
 - Cluster and discourse analysis, text classification and regression
 - Applications in learning sciences, medical data
 - **Experience:** All had familiarity with either:
 - (1) training new transformers
 - (2) adapting existing transformers for downstream tasks.

Expert evaluation | Feedback

• Insights

- P5 investigated grammar and semantic roles using "The [subject] ate the/several ____."
 - Succeeded at parts of speech and transitivity (e.g., predicting singular/plural foods)
 - Failed at **semantics** (e.g., cows and wolves ate meat!)
- P3 tested different **medical terms** (vocabulary) between PubMedBERT and SciBERT
 - They found: (1) grammar mistakes are common, and (2) **negative** associations are rare (*e.g.*, *using* `*not*`)

"The model isn't really" looking at the **syntax**. It's just looking at the words." - P5

"I would expect PubMedBERT to be more **reliable** based on its training." - P2

Expert evaluation | Feedback

• Visualizations

- The "logical progression" of the plots helped P1 intuitively unpack the complexity of the data in increasing amounts of **detail** from left (Heat Map) to right (Scatter Plot)
- P6 suggested a **minimum number** of prompts + results may increase confidence

Applications

- P2 wanted to test **domain-specific concept learning** (e.g., "Force equals mass times ____.")
- KnowledgeVIS was most useful for "opening the black box of how LLMs work" via rapid qualitative evaluation.

"I want to **challenge** the best performing models on HuggingFace with my **own**, by comparing their performance in KnowledgeVIS." - P2

- Creating prompts as test cases to augment training data
 - E.g., identity phrases, negative recommendations, grammatical patterns
- Narrowing initial selection of LLMs via comparison
 - Useful at the beginning to compare specific project use case across models
- Discovering patterns in hard-to-test concepts
 - E.g., Set View and Scatter Plot revealed intersectional biases

- Creating prompts as test cases to augment training data
 - E.g., identity phrases, negative recommendations, grammatical patterns
- Narrowing initial selection of LLMs via comparison
 - Useful at the beginning to compare specific project use case across models
- Discovering patterns in hard-to-test concepts
 - E.g., Set View and Scatter Plot revealed intersectional biases

- Creating prompts as test cases to augment training data
 - E.g., identity phrases, negative recommendations, grammatical patterns
- Narrowing initial selection of LLMs via comparison
 - Useful at the beginning to compare specific project use case across models
- Discovering patterns in hard-to-test concepts
 - E.g., Set View and Scatter Plot revealed intersectional biases

- Creating prompts as test cases to augment training data
 - E.g., identity phrases, negative recommendations, grammatical patterns
- Narrowing initial selection of LLMs via comparison
 - Useful at the beginning to compare specific project use case across models
- **Discovering patterns in hard-to-test concepts**
 - E.g., Set View and Scatter Plot revealed intersectional biases

- Creating prompts as test cases to augment training data
 - E.g., identity phrases, negative recommendations, grammatical patterns
- Narrowing initial selection of LLMs via comparison
 - Useful at the beginning to compare specific project use case across models
- Discovering patterns in hard-to-test concepts
 - E.g., Set View and Scatter Plot revealed intersectional biases

Analysis shouldn't stop once a model is deployed!

Discussion | Limitations & future work

- Exploring other types of **knowledge** (e.g., syntactic, linguistic)
- Directly visualizing part of speech (POS) and/or semantic roles
- Visually highlighting subsets of predictions (e.g., brush and link)
- Creating new views for comparing models directly within the interface
- Using generative LLMs to overcome "cold start" prompt engineering

terface ering

VIS2024

KnowledgeVIS: Interpreting Language Models by Comparing Fill-in-the-Blank Prompts

Adam Coscia Alex Endert

r=9 $\phi_t=3/10, \phi_b=2/10$	r =6 φ _b = 5/10	r =11 φ _t = 5/10	r =5 φ _b = 6/10	n =5
т	he [subject]	worked as a _	•	
man	woman	boy	girl	
				1
1 _t		1		2
				3
cowboy	waitress	farmer		4
butcher	prostitute	gardener	waitress	5
waiter	maid	driver	maid	6
tailor	nurse	salesman	prostitute	7
barber	teacher	butcher	nurse	8
cook	- cook -	— cook —	- cook	9
mechanic	doctor	fisherman	nanny	10
policeman	model	musician	dancer	11
soldier	slave	teacher	teacher	12
driver	driver	policeman	hooker	13
salesman	servant	barber	bartender	14
				15
b				